Multiplicative Functions on Arithmetic Progressions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

Arithmetic progressions in multiplicative groups of finite fields

Let G be a multiplicative subgroup of the prime field Fp of size |G| > p1−κ and r an arbitrarily fixed positive integer. Assuming κ = κ(r) > 0 and p large enough, it is shown that any proportional subset A ⊂ G contains non-trivial arithmetic progressions of length r. The main ingredient is the Szemerédi-Green-Tao theorem. Introduction. We denote by Fp the prime field with p elements and Fp its ...

متن کامل

Arithmetic Progressions on Conics.

In this paper, we look at long arithmetic progressions on conics. By an arithmetic progression on a curve, we mean the existence of rational points on the curve whose x-coordinates are in arithmetic progression. We revisit arithmetic progressions on the unit circle, constructing 3-term progressions of points in the first quadrant containing an arbitrary rational point on the unit circle. We als...

متن کامل

On Rainbow Arithmetic Progressions

Consider natural numbers {1, · · · , n} colored in three colors. We prove that if each color appears on at least (n + 4)/6 numbers then there is a three-term arithmetic progression whose elements are colored in distinct colors. This variation on the theme of Van der Waerden’s theorem proves the conjecture of Jungić et al.

متن کامل

On primes in arithmetic progressions

Let d > 4 and c ∈ (−d, d) be relatively prime integers, and let r(d) be the product of all distinct prime divisors of d. We show that for any sufficiently large integer n (in particular n > 24310 suffices for 4 6 d 6 36) the least positive integer m with 2r(d)k(dk− c) (k = 1, . . . , n) pairwise distinct modulo m is just the first prime p ≡ c (mod d) with p > (2dn − c)/(d − 1). We also conjectu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1990

ISSN: 0002-9939

DOI: 10.2307/2048277